ANAEROBIC DIGESTION AND BIOGAS

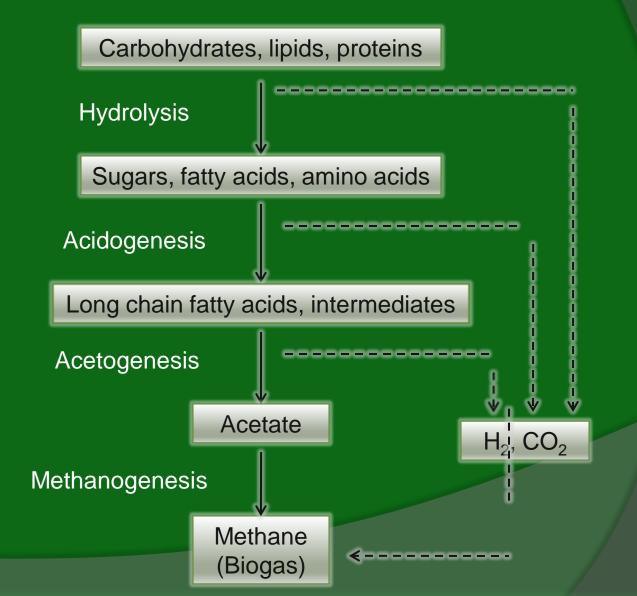
Microbiology

Microbiology of biogas

- Anaerobic digestion utilizes a consortium of microbes in four distinct phases
- Products of one phase are feedstocks for next phase (serial process)
- For optimal performance, each rate keeps up with previous
- Microbial populations are ever-evolving

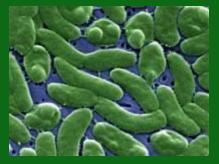
What is anaerobic digestion? (Biochemistry perspective)

- Aerobic organisms use oxygen as their electron acceptor
- Anaerobic organisms utilize alternative electron acceptors
- Facultative organisms are aerobic or anaerobic


What is anaerobic digestion? (Biochemistry perspective)

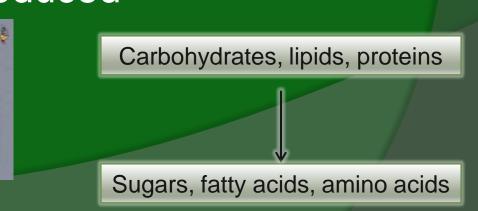
- Anaerobic electron acceptors (oxidizers)
 - NO³⁻, Fe³⁺, Mn³⁺, SO₄³⁺, CO₂
- Significantly different energy output
 30 ATP (aerobic) vs. 2 ATP (anaerobic)
- Anaerobic metabolism occurs throughout nature (hydric soils, ruminants, etc.)

Phases of digestion


- Hydrolysis
- Acidogenesis
- Acetogenesis
- Methanogenesis

Digestion Process

Hydrolysis


- Large organic compounds are broken down into simpler compounds
- Performed by many organisms
 - Bacteria, fungi, protists
- Facilitated by extracellular enzymes
- H₂ and CO₂ also produced

Vibrio

Hartmanella

Acidogenesis

- Products of hydrolysis are fermented into volatile fatty acids
- Also termed fermentative bacteria
- Trace oxygen consumed by facultative bacteria
- Also produces acetate, H_2 , and CO_2

Lactobacillus

Propionibacterium

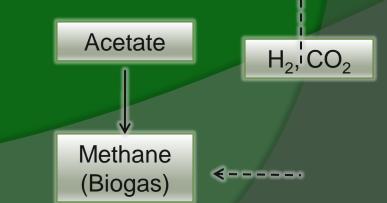
Sugars, fatty acids, amino acids

Long chain fatty acids, intermediates

Acetogenesis

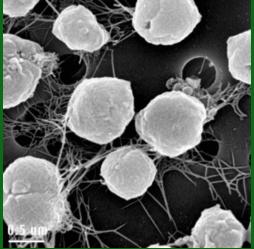
- Long-chain volatile fatty acids are converted to acetate, H₂, and CO₂
- Metabolizes intermediates (proprionate, butyrate)
- Two groups of acetogens
 - Obligate hydrogen-producing acetogens (OHPA) more dominant
 - Homoacetogens less dominant

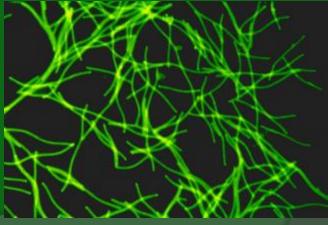
Syntrophomonas


Long chain fatty acids, intermediates Acetate, CO₂, H₂

Acetogenesis (OHPA)

- Produce acetate, CO_2 and H_2 from fatty acids
- Metabolize in low-H₂ environments
- Mutualistic relationship with methanogens (Syntropy)
 - Methanogens consume H₂, OHPA produce acetate and consume fatty acids
- Ositive feedback cycle if balance disturbed
- Homoacetogens produce acetate from CO₂ and H₂
 - Also assist in reducing H₂


Methanogenesis


- Final metabolic phase
- Methanogens produce methane gas from acetate, H₂ and CO₂
- 2/3 of methane produced is derived from acetate
- Often the rate limiting step in anaerobic digestion
 - Can lead to accumulation of acids

Methanogens

- All are Archaebacteria
- Obligate anaerobes
- Optimum performance at neutral pH (7)
- Many genera convert H₂ and CO₂ to methane (Hydrogenotrophic)

Methanospirillum

Methanococcus

Methanogens

 Two known genera convert acetate to methane (Acetoclastic)

- Methanosarcina Favor high concentration
- Methanosaeta Favor low concentration

Methanosarcina

Methanosaeta

Questions?